Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310364, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109153

RESUMO

Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40 Zr10 Cu34 Pd14 Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40 Zr10 Cu34 Pd14 Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.

2.
J Am Chem Soc ; 144(22): 9597-9609, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608382

RESUMO

Solids with extraordinarily high Li+ dynamics are key for high performance all-solid-state batteries. The thiophosphate Li10GeP2S12 (LGPS) belongs to the best Li-ion conductors with an ionic conductivity exceeding 10 mS cm-1 at ambient temperature. Recent molecular dynamics simulations performed by Dawson and Islam predict that the ionic conductivity of LGPS can be further enhanced by a factor of 3 if local disorder is introduced. As yet, no experimental evidence exists supporting this fascinating prediction. Here, we synthesized nanocrystalline LGPS by high-energy ball-milling and probed the Li+ ion transport parameters. Broadband conductivity spectroscopy in combination with electric modulus measurements allowed us to precisely follow the changes in Li+ dynamics. Surprisingly and against the behavior of other electrolytes, bulk ionic conductivity turned out to decrease with increasing milling time, finally leading to a reduction of σ20°C by a factor of 10. 31P, 6Li NMR, and X-ray diffraction showed that ball-milling forms a structurally heterogeneous sample with nm-sized LGPS crystallites and amorphous material. At -135 °C, electrical relaxation in the amorphous regions is by 2 to 3 orders of magnitude slower. Careful separation of the amorphous and (nano)crystalline contributions to overall ion transport revealed that in both regions, Li+ ion dynamics is slowed down compared to untreated LGPS. Hence, introducing defects into the LGPS bulk structure via ball-milling has a negative impact on ionic transport. We postulate that such a kind of structural disorder is detrimental to fast ion transport in materials whose transport properties rely on crystallographically well-defined diffusion pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...